
NEXTSTEP In Focus, Spring 1993 (Volume 3, Issue 2). 
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

How We Tested NEXTSTEP for 
Intel Processors
Jim Walsh

Testing NEXTSTEP for Intel Processors presented a unique situation for 
NeXT. While the software is in its third generation on NeXT's proprietary 
hardware, NEXTSTEP Release 3.1 is the initial release on Intel's line of 
microprocessors. Our goal was to have the same level of product maturity
on Intel-based platforms as we have on hardware we designed and 
controlled. Fortunately, we were aided in this effort by the nature and 
design of NEXTSTEP itself.

FEW CHANGES TO USER-VISIBLE PARTS
The encapsulated, object-oriented design of the application layer of 
NEXTSTEPÐthe things you interact with every day, like Workspace 
Manager and MailÐmade porting the user-visible portions of the 
environment simple and largely error-free. The user and developer 
applications that form a major portion of the NEXTSTEP code are almost 
entirely insulated from the underlying hardware by the NEXTSTEP 
Application Kitä and other NeXT software libraries.      
In all, only 17% of the machine-dependent bugs discovered were 
problems in the application layer. Many of the reports we did receive in 
this area were about cosmetic thingsÐsuch as key labelsÐthat differ 
between NeXT hardware and some PCs. 

Making the Application Kit general

In addition, because of their clean design, the Application Kit and NeXT 
libraries themselves were also relatively easy to port, though in places we



had to make them more general to account for differences in hardware. 
For example, the objects in the Application Kit that interact with binary 
data such as fonts had to change to account for byte order dependencies,
as did methods that manipulate bit fields. The generalizations we made 
make hardware differences transparent to applicationsÐincluding 
oursÐthat run on top of the NeXT libraries. 
As a further plus, we made these changes in such a way that we can build
NEXTSTEP itself for all architectures simultaneously from a single 
program source tree. This consistency from platform to platform improves
quality by cutting the potential for introducing errors when we integrate 
and build our code. It also simplifies testing because it guarantees 
identical softwareÐand therefore identical (non-hardware) bugsÐon all 
platforms. 

Concentrating on the lowest level

In addition, the fact that we made few changes to most of the user-visible
software minimized the errors that might have been introduced in 
modifying this code. We still tested all of our code on both platforms, 
using our normal testing methodology. However, because porting 
introduced relatively few bugs into the high-level functionality, we were 
free to concentrate extra effort on testing the low-level areas directly 
affected by the Intel port itself.

TESTING CHALLENGES
Some important challenges in testing NEXTSTEP for Intel-based 
processors arose from four factors: 

· The radical increase in the number of types of hardware systemsÐand 
cardsÐto be supported

· The need to co-exist with other popular operating systems capable of 
running on the same hardware

· The need to ensure compatibility between NEXTSTEP systems running 
on both types of hardware, ªblackº and ªwhiteº 

· Our goal of making NEXTSTEP installation onto Intel-based hardware as



easy as it is on our proprietary hardware 
In addition to shipping on two platform architectures, NEXTSTEP Release 
3.1 is also shipping in six spoken languages, with on-line and printed 
documentation available in three languages. This further multiplied the 
test permutations required. 

Selective support

To assure product quality on the new hardware architecture, we chose to 
provide support for a selected set of high-performance Intel-based PC 
hardware in the initial release. This strategy is preferable to trying to be 
compatible with every 486-based platform and card, which would have 
meant using only the features supported by the lowest common 
denominator equipment. Nonetheless, even though the strategy we 
chose permits us to test more thoroughly and provide better driver 
support for the hardware we select, we still had to test a daunting 
number of configurations. 
To cope with this complexity, we adopted a three-pronged approach that 
involved creating test suites, grouping tests into ªequivalence classes,º 
and using additional spot testing.
Test suites

We developed test suites to exercise the major classes of devices 
supported by NEXTSTEP Release 3.1: systems, mass storage, serial and 
parallel I/O, printing, networking, graphics, sound, and keyboard and 
mouse inputs. These suites accessed the devices through their device 
drivers and at higher levels under NEXTSTEP, rather than addressing 
them at the hardware level. 
This made the tests themselves portable from device to device, while still
thoroughly exercising the devices' operation under NEXTSTEP. By using 
device drivers and NEXTSTEP to provide a portability layer for tests, we 
avoided crafting a specific test suite for each piece of hardware, and 
directly addressed the area of interestÐthe behavior of the devices under 
NEXTSTEP.
Test classes

We simplified our testing by partitioning our test set so that each device 



was tested thoroughly in distinct supported configurations, and lightly in 
equivalent configurations. For example, if the major variable affecting a 
particular ISA card's operation was the system bus architecture, we 
tested that card thoroughly on one ISA and one EISA system, and lightly 
on other ISA and EISA systems. This kept the number of test 
configurations under control, while still achieving substantial test 
coverage. 
ªRandomº testing

To fill any remaining gaps in our hardware test coverage, we had a 
vigorous program of ªrandomº testing consisting of extensive in-house 
use of early versions on a wide variety of hardware configurations, ªbug 
huntsº on these configurations, and a pre-release program involving 
several hundred sites, selected in part for their diversity of hardware 
configurations. In all, 30% of the bugs reported against Release 3.1 were 
spotted by the pre-release sites, and roughly 4% were found through bug 
hunts. 
Relatively low percentages like these for bugs reported by pre-release 
sites are good news, because they mean our internal test program has 
been effective at finding bugs before users do.

Making installation easy

We used a similar partitioning strategy to test installation of NEXTSTEP 
onto various hardware configurations. NEXTSTEP is easy to install on 
NeXT hardware, distinguishing it from most other operating systems on 
any platform. In part, this ease of installation is achieved through a 
combination of hardware, software, and manufacturing support. 
On PC hardware, though, installation is a different story. Simply getting a 
fully-configured PC to boot under any operating systemÐwhether it be 
NEXTSTEP or something elseÐcan be a major undertaking, involving 
wrestling with IRQ lines, DIP-switch settings, and so on. Various industry 
initiatives are trying to address this endemic problem of the PC industry, 
but in the meantime NeXT would like to come as close as possible to the 
sort of turn-key product installation offered for NeXT hardware. 
We have used our expertise in user interface design to make installing 
NEXTSTEP itself quite painless once your hardware is bootable. However, 



until your hardware can boot, it's of course impossible to run our 
softwareÐor any otherÐon it. To get you to the point where your system 
can boot, we therefore have used non-software methods. 
For extremely simple installation, we negotiated with several hardware 
vendors to have them ship systems that are pre-configured and pre-
loaded with NEXTSTEP, removing the need for you to do any software 
installation. For systems that aren't preconfigured, we set up on-line 
documents that you can access by e-mail or phone, to give you the 
information you need to configure your hardware properly.

INTEROPERABILITY STRATEGIES
It required a significant amount of attention to test NEXTSTEP for Intel 
Processors for compatibility and interoperability with networking and file 
exchange standards, other popular PC-operating systems, and NEXTSTEP 
running on NeXT's proprietary hardware. Our testing addressed such 
areas as multi-OS booting, mounting 12- and 16-bit FAT DOS file systems,
using various network transport layers, TCP/IP, NFS, SMTP compatibility, 
and Novellâ support, among others. 
Fortunately, much of the code to support these features was inherited 
from earlier versions of NEXTSTEP and so was already stable and well-
characterized. The major areas of change were in the mechanics of 
making up for missing hardware supportÐsuch as a NeXTstation's ability 
to eject floppy disks under program control, or its Power key, which was 
similarly under program control. We also had to accommodate features 
that PCs have but NeXT computers don't, such as the ability to boot a 
different operating system from a different disk partition.

MEETING THE CHALLENGE
In all, from a quality standpoint, the port of NEXTSTEP to Intel Processors 
went very smoothly, especially for software of its size and sophistication. 
The major challenge from a testing standpoint was the volume of work 
needed to test support for a wide variety of new hardware and hardware 
configurations. We are meeting this challenge and moving forward in a 
variety of innovative ways, such as with our hardware certification 



programÐwhich will be discussed in a future article!

Jim Walsh is NeXT's Software Quality Manager. You can reach him by e-
mail at Jim_Walsh@next.com.

WHAT IS ªAT LEAST AS GOOD AS 3.0º?
A good way to measure software quality is the software's defect discovery rateÐhow long 
someone can use it before finding a previously unknown bug. In addition to translating directly to 
reliability, this means of measuring has been shown to predict the number of unknown bugs still in 
the software. 

The basic idea is that the more bugs you find in a given period of testing time, the ªworseº the 
software is. (There are some subtleties, though; for example, very buggy software has a low 
defect discovery rate because it crashes so often you can't test it effectively.)

Ideally, one would like to know how many defects were discovered per unit of CPU time 
consumedÐCPU time indicates how much the software has been used quite accurately. For an 
entire OS such as NEXTSTEP, however, this is a difficult quantity to measure. Instead, we use the
number of bugs reported per user, per day.

The standard defect discovery rate curve looks like the graph below. There's a gradually 
increasing defect discovery rate, corresponding to the period when new code is integrated. The 
defect rate hits its peak during alpha testing, just before beta testing begins, and then falls to a 
plateau during beta as bugs get harder to find. Finally, it drops off to a fairly small value as most of
the bugs that are going to be found are reported.

For NEXTSTEP Release 3.0, the defect discovery rate graph was nearly identical to the standard 
one. For Release 3.1, we're aiming for a defect discovery rate at or below the one we had for 
Release 3.0.

For more information on defect discovery rates, see ªDetermining Software Qualityº in the April 
1993 issue of Computer Language, pp. 57-65. Also see Software Reliability: Measurement, 
Prediction, Application by John D. Musa et al. (New York: McGraw-Hill Book Company, 
1987.)ÐJW 

graph2rev.eps ¬



Most defect discovery rate graphs have this characteristic shape.


